Artificial intelligence and the shifting technology landscape

Artificial intelligence and the shifting technology landscape
As technology continues to shift and evolve, dive into the world of artificial intelligence and its myriad applications with Titanbay.

From machine learning to large language models, AI's capabilities are growing, bringing the technology sector to an inflection point.

AI is a broad term, referring to algorithms or software designed to imitate the human brain’s problem-solving and decision-making functions. An AI tool can undertake far more complex tasks than a conventional computer programme, and improve itself continuously as underlying datasets grow.

AI is not a new concept. Machine learning (ML), a sub-category within AI, has been used by many businesses for years. DeepMind, for example, which was acquired by Google-parent Alphabet in 2014, is integrated into both its search engine and Youtube’s video-suggestion algorithm.

Generative AI tools and large language models, such as OpenAI’s ChatGPT and Google’s Bard, have continuously advanced. This progress has created a huge range of potential use cases for businesses and consumers, even those outside of the technology ecosystem and without deep technical expertise.

As the core enablers of its progress – increasing computer power, more robust cloud data infrastructure, and a deepening talent pool – continue to develop, AI is poised for even greater transformation, with the potential for significant disruption.

An overview of AI       
AI is a general term covering a broad range of technologies and use cases across many sectors, but it can be broadly grouped into four segments.


Spotlight: generative AI      
Generative AI refers to AI systems that produce outputs resembling those of humans. These models use deep learning to create new data such as images, text and audio. Examples include:

  • Generative adversarial networks, such as those used in lifelike images and deepfakes;

  • Text-generation models like ChatGPT, whose output is human-like text;

  • And music-generation models that create compositions.

AI and ML Investment      
Given AI’s significant potential and the fact that early tools such as machine learning have had such a material impact on business operations, some venture capitalists and private equity investors have focused on the sector for many years. However, with recent step changes in technological progress, investment in generative AI businesses is gaining momentum.

According to Pitchbook, investment in businesses incorporating AI and machine learning peaked at $56.9 billion in the third quarter of 2021, as shown in Chart 1, below. Although investment flows slowed from the second quarter of 2022, reflecting the broader market slowdown, AI and ML investment remained robust at $36.8 billion for the same period in 2023.

Chart 1: Private capital invested in AI and ML remained robust in H1 2023

Source: Pitchbook Data, Inc. Capital invested in USD billions. Data includes all AI and machine learning investment by private equity, venture capital, and corporate M&A.

A key feature of AI investment is the high concentration of deal activity in North America, which benefits from a long-established technology ecosystem and strong network effects. While the share of investment has been lower in Asia and Europe, capital invested is still meaningful in these regions.

Chart 2: North America is the most active region for AI investment

Source: Pitchbook Data, Inc. Data includes all AI and Machine learning investment by Private Equity, Venture Capital, and Corporate M&A. ‘Other’ includes Africa, Central America, Middle East, Oceania and South America.

In 2023, generative AI, partly popularised by the launch of OpenAI’s Dall-E and ChatGPT, has become a significant focus for investors. In the first half of 2023, $20.5 billion of capital was invested in generative AI businesses, an amount higher than the combined total of the previous four years, as shown in Chart 3. 

Chart 3: Private capital invested in generative AI

Source: Pitchbook Data, Inc. Capital invested in USD billions. Data includes all generative AI deals completed though private equity, venture capital, and corporate M&A.

With AI gaining traction due to better understanding of its use cases and potential end-markets, valuations for generative AI businesses have also increased markedly. The median post-money valuation for a generative AI deal has increased by 39% from 2022 to 2023, reaching $50 million, as Chart 4 details. There is also a clear upside bias as market-leading businesses command premium valuations. In recent months there have been reported fundraising rounds at more than 100x revenue multiples, and businesses pre-revenue and pre-product being valued in the hundreds of millions [5].

Chart 4: Generative AI valuations have increased markedly

Source: Pitchbook Data, Inc. Post-money valuation in USD billions. Data includes all generative AI deals completed though private equity, venture capital, and corporate M&A.

Source (transaction data): Pitchbook, August 2023.

Challenges and risks
AI’s power and potentially transformative benefits bring with it natural risks and challenges.

  • Data quality and data availability       
    To work effectively, AI needs large volumes of data to help it make accurate predictions. In the context of private markets, this is particularly challenging given the opacity of the industry and difficulty in obtaining accurate data on private companies.

  • Interpretability       
    While AI can be used to interpret swathes of data, it can be difficult to follow the procedure it undertook to reach each conclusion. Many AIs use complex algorithms, far exceeding human capabilities. While this has many benefits, a human’s ability to explain a decision and how they reached a conclusion is invaluable.

  • Regulation and security       
    Innovation often precedes regulation, and AI is no different. Regulatory developments are inevitable and necessary given AI’s power. These could materially change how tools are developed and deployed, and, ultimately, determine which AI businesses are viable. Of course, data security and the threat of bad actors must also be carefully managed.

AI represents a sea change in technological development. Although still relatively nascent, AI tools and solutions already offer material benefits to businesses and consumers. A new generation of companies, one that will build even more powerful AI tools, is emerging. Many industries will face material disruption and will be forced to adapt.

The AI landscape is becoming increasingly competitive. There are already new, open source large language models, built with very small teams, that are proving more capable than ChatGPT and Bard on many benchmarks. AI businesses that emerge as market leaders will likely have proprietary datasets on which they can train their models, providing intellectual property and a defensible competitive advantage. Additionally, user experience matters. AI tools will not be embraced by businesses and consumers alike if they are not easy to understand and use.

The rise of AI has undoubtedly generated immense interest and excitement in the investment world. However, this increased interest has also raised concerns about the potential for speculative investments and the formation of a market bubble. As competition intensifies, entry multiples are likely to rise further, making it essential for investors to exercise caution and prudence.

In order to navigate this dynamic landscape, diversification in investment strategies becomes crucial. The best way to gain exposure to AI is through a diversified portfolio, which spreads the risk across various assets and industries. This approach can help investors mitigate the impact of any potential market downturns or overvaluation in specific AI-related sectors.

Moreover, specialist investors who focus solely on the AI domain can enjoy unique competitive advantages. Their deep industry networks allow them to access exclusive investment opportunities and stay well-informed about the latest developments in the field. Additionally, specialist investors benefit from deal pattern recognition, gained through repeat investments in AI ventures. 

1, 2, 3, 4, 2023 Artificial Intelligence and Machine Learning Overview | PitchBook       
The generative AI landscape: Top startups, venture capital firms, and more, CB Insights, 2023.


Important disclosures       
This material has been prepared by Titanbay Ltd and its affiliates (together, “Titanbay”) and is provided for information purposes only. This document is directed at professional investors and qualified investors who have sufficient knowledge and experience to understand the risks of investing in private market investments.

This material should not be construed as legal, tax, investment advice or an invitation, general solicitation, recommendation, an opinion regarding the appropriateness or suitability of any investment strategy, or offer to buy, sell, or hold any investments or securities offered on or off the Titanbay investment platform. The views, opinions and estimates expressed herein constitute personal judgments of certain members of the Titanbay team based on current market conditions and are subject to change without notice. This information in no way constitutes Titanbay research and should not be treated as such. Any forecasts, figures, opinions or investment techniques and strategies set out are for information purposes only, based on certain assumptions and current market conditions and are subject to change without prior notice.

All information presented herein is considered to be accurate at the time of production unless otherwise stated and has been prepared from sources Titanbay believes to be reliable. No representation or warranty or guarantee, express or implied, is given as to the truth, accuracy or completeness of the information or opinions contained herein and material aspects of descriptions contained in this material are subject to change without notice. No reliance may be placed for any purposes on the information or opinions contained in this material. Titanbay is not responsible for any error or omission in this material, nor do we accept liability for any losses arising from its use. Non-affiliated entities mentioned are for informational purposes only and should not be construed as an endorsement or sponsorship of Titanbay.

Investments in private placements and private equity investments via feeder funds in particular, are complex, highly illiquid and speculative in nature and involve a high degree of risk. The value of an investment may go down as well as up, and investors may not get back their money originally invested. Investors who cannot afford to lose their entire investment should not invest. Past performance, including simulated performance, is not a reliable indicator of future performance. For private equity investments via feeder funds, investors will typically receive illiquid and/or restricted membership interests that may be subject to holding period requirements and/or liquidity concerns. Investors who cannot hold an investment for the long term (at least 10 years) should not invest.

Titanbay Ltd is an Appointed Representative of Brooklands Fund Management Limited which is authorised and regulated by the Financial Conduct Authority with firm reference number 757575. Copyright Titanbay 2023.


Top Stories